机器学习中的相似性度量!
发布时间:2021-01-10 10:21:50 所属栏目:大数据 来源:网络整理
导读:在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。 本文的目的就是对常用的相似性度量作一个总结。 本文目
?????? 若协方差矩阵是单位矩阵(各个样本向量之间独立同分布),则公式就成了: ?????? 也就是欧氏距离了。 若协方差矩阵是对角矩阵,公式变成了标准化欧氏距离。 (2)马氏距离的优缺点:量纲无关,排除变量之间的相关性的干扰。 (编辑:ASP站长) 【免责声明】本站内容转载自互联网,其相关言论仅代表作者个人观点绝非权威,不代表本站立场。如您发现内容存在版权问题,请提交相关链接至邮箱:bqsm@foxmail.com,我们将及时予以处理。 |
相关内容
未处理完善
-
无相关信息
最新更新